Norm Uncertainty¶
- class lropt.Norm(dimension=None, p=2, rho=1.0, a=None, b=None, c=None, d=None, data=None, ub=None, lb=None, sum_eq=None)¶
Norm uncertainty set, defined as
\[\mathcal{U}_{\text{Norm}} = \{Az+b \ | \ z\| \|_p \le \rho\}\]when \(p = 2\) this is an ellipsoidal set, and when \(p = \infty\) this is a box set
Parameters¶
- rhofloat, optional
Default 1.0.
- pinteger, optional
Order of the norm. Default 2.
- Anp.array, optional
matrix defining \(A\) in uncertainty set definition. By default \(A = I\)
- bnp.array, optional
vector defining \(b\) in uncertainty set definition. By default \(b = 0\)
- data: np.array, optional
An array of uncertainty realizations, where each row is one realization. Required if the uncertainty should be trained.
- c: np.array, optional
matrix defining the lhs of the polyhedral support: :math: cu le d. By default None.
- d: np.array, optional
vector defining the rhs of the polyhedral support: :math: cu le d. By default None.
- ub: np.array | float, optional
vector or float defining the upper bound of the support. If scalar, broadcast to a vector. By default None.
- lb: np.array | float, optional
vector or float defining the lower bound of the support. If scalar, broadcast to a vector. By default None.
- sum_eq: np.array | float, optinal
vector or float defining an equality constraint for the uncertain vector. By default None.
Returns¶
- Norm
Norm uncertainty set.