Ellipsoidal Uncertainty¶
- class lropt.Ellipsoidal(dimension=None, rho=1.0, p=2, a=None, b=None, c=None, d=None, data=None, ub=None, lb=None, sum_eq=None)¶
Ellipsoidal uncertainty set, defined as
Parameters¶
- rhofloat, optional
Ellipsoid scaling. Default 1.0.
- Anp.array, optional
matrix defining
in uncertainty set definition. By default- bnp.array, optional
vector defining
in uncertainty set definition. By default- data: np.array, optional
An array of uncertainty realizations, where each row is one realization. Required if the uncertainty should be trained, or if loss function passed.
- loss: function, optional
The loss function used to train the uncertainty set. Required if uncertainty set parameters should be trained or if data is passed. Function must use torch tensors, and arguments to loss function must be given in the same order as cvxpy variables defined in problem.
- c: np.array, optional
matrix defining the lhs of the polyhedral support: :math: cu le d. By default None.
- d: np.array, optional
vector defining the rhs of the polyhedral support: :math: cu le d. By default None.
- ub: np.array | float, optional
vector or float defining the upper bound of the support. If scalar, broadcast to a vector. By default None.
- lb: np.array | float, optional
vector or float defining the lower bound of the support. If scalar, broadcast to a vector. By default None.
- sum_eq: np.array | float, optinal
vector or float defining an equality constraint for the uncertain vector. By default None.
Returns¶
- Ellipsoidal
Ellipsoidal uncertainty set.